First Asymmetric Synthesis of a Hasubanan Alkaloid. Total Synthesis of (+)-Cepharamine

Arthur G. Schultz* and Aihua Wang

Department of Chemistry Rensselaer Polytechnic Institute Troy, New York 12180-3590

Received May 11, 1998

(-)-Cepharamine (1), isolated from Stephania cepharantha

Haijata, is a member of the hasubanan family of alkaloids.¹ The hasubanan alkaloids are of pharmacological interest because of their structural resemblance to the morphine alkaloids; see morphine (2)² However, the absolute configuration at C(13) in 1 is opposite to that in morphine, resulting in an inversion of the critical spatial relationship of the nitrogen atom to the aromatic ring in 1 relative to 2. Thus, the natural enantiomers of cepharamine and other hasubanan alkaloids are expected to be ineffective analgesic agents.³ Although there has been substantial interest in the synthesis of hasubanan alkaloids,^{4,5} an enantioselective synthesis has not been reported. Herein we describe the first asymmetric synthesis of (+)-cepharamine, the unnatural enantiomer of 1, by a highly convergent strategy dependent upon the asymmetric Birch reduction-alkylation protocol⁶ and a radical cyclization reaction to fashion the critical C(9)-C(14) and C(12)-C(14)C(13) bonds.

Birch reduction of the chiral benzamide 3^7 with potassium in NH₃, THF, and *tert*-butyl alcohol (1 equiv) at -78 °C, followed by addition of LiBr⁸ and then the alkylation reagent 4^9 gave the

(1) (a) Bentley, K. W. In *The Alkaloids*; Manske, R. H. F., Ed.; Academic Press: New York, 1971; Vol. 13, pp 131–143. (b) Inubushi, Y.; Ibuka, T. In *The Alkaloids*; Manske, R. H. F., Ed.; Academic Press: New York, 1977; Vol. 16, pp 393–430. (c) Matsui, M. In *The Alkaloids*; Brossi, A., Ed.; Academic Press: New York, 1988; Vol. 33, pp 307–347.

(2) For the pharmacology of the hasubanan alkaloids, see ref 1c.

(3) The unnatural enantiomers of codeine, morphine, and heroin showed no antinociceptive activity on subcutaneous injection in mice; see: Iijima, I.; Minamikawa, J.; Jacobson, A. E.; Brossi, A.; Rice, K. J. Org. Chem. **1978**, *43*, 1462–1463.

(4) For syntheses of racemic cepharamine, see: (a) Inubushi, Y.; Ibuka, T.; Kitano, M. *Tetrahedron Lett.* **1969**, 1611–1614. (b) Inubushi, Y.; Kitano, M.; Ibuka, T. *Chem. Pharm. Bull.* **1971**, *19*, 1820–1841. (c) Kametani, T.; Nemoto, H.; Kobari, T.; Shishido, K.; Fukumoto, K. *Chem. Ind.* (London) 1972, 538–540. (d) Kametani, T.; Kobari, T.; Fukumoto, K. *J. Chem. Soc., Chem. Commun.* **1972**, 288–289. (e) Kametani, T.; Kobari, T.; Shishido, K.; Fukumoto, K. *Tetrahedron* **1974**, *30*, 1059–1064. (f) Schwartz, M.; Wallace, R. *Tetrahedron Lett.* **1979**, 3257–3260.

(5) For syntheses of some congeners of the hasubanan alkaloids, see (a) Okuda, S.; Tsuda, K.; Yamaguchi, S. J. Org. Chem. **1962**, 27, 4121–4122. (b) Tomita, M.; Kitano, M.; Ibuka, T. Tetrahedron Lett. **1968**, 3391–3393. (c) Evans, D. A.; Bryan, C. A.; Wahl, G. M. J. Org. Chem. **1970**, 35, 4122–4127. (d) Keely, S. L., Jr.; Martinez, A. J.; Tahk, F. C. Tetrahedron **1970**, 26, 4729–4742. (e) Evans, D. A.; Bryan, C. A.; Sims, C. L. J. Am. Chem. Soc. **1972**, 94, 2891–2892. (f) Monkovic, I.; Conway, T. T.; Wong, H.; Perron, Y. G.; Pachter, I. J.; Belleau, B. J. Am. Chem. Soc. **1973**, 95, 7910–7912. (h) Monkovic, I.; Wong, H. Cam. J. Chem. **1976**, 54, 883–891.

(6) (a) Schultz, A. G. Acc. Chem. Res. 1990, 23, 207–213. (b) Schultz, A. G. J. Chin. Chem. Soc. (Taiwan) 1994, 41, 487–495.

(7) Benzamide **3** was prepared in 5 steps (58% overall yield) from commercially available 2-bromo-5-methoxybenzoic acid by way of a literature procedure; see: Bruggink, A.; McKillop, A. *Tetrahedron* **1975**, *31*, 2607–2619.

(8) LiBr is added to prevent elimination of HI from 4.

Scheme 1^a

^{*a*} Reaction conditions: (a) $BF_3 \cdot OEt_2$, $Bu_4NF \cdot XH_2O$, CH_2Cl_2 ; (b) NaBH₄, THF; (c) PTSA, PhH, reflux; (d) CH₃CO₂CHO, pyridine, CH₂Cl₂; (e) *t*-BuOOH, CuBr, PhH; (f) (TMSOCH₂)₂, TMSOTf; (g) AIBN, Bu₃SnH, PhH, reflux; (h) Na₂CO₃, MeOH, H₂O, THF; (i) NaH, THF, MOMCl, reflux; (j) NH₃, THF, -33 °C to 25 °C; (k) MeOH, THF, -78 °C to reflux; (l) THF, reflux; (m) Et₃N, CH₂Cl₂, -10 °C; (n) 18-crown-6, DMF, 25 °C; (o) acetone, H₂O, reflux.

1,4-cyclohexadiene **5** in 95% yield as a single diastereomer (Scheme 1).^{10,11} Enol ether hydrolysis¹² and reduction of the resulting cyclohexenone derivative with NaBH₄ gave a mixture of diastereomerically related alcohols (\sim 1:1). As expected from earlier model studies,¹³ both diastereomers gave the phenolic lactone **6** on treatment with *p*-toluenesulfonic acid (PTSA) in refluxing benzene solution. It is assumed that the *syn*-hydroxya-mide converts to **6** by an acid-catalyzed transesterification and the *anti*-hydroxyamide by an amide carbonyl assisted ionization of the protonated alcohol.

Although it was found that **6** underwent radical cyclization (*as the unprotected phenol*) to give the desired hydrophenanthrene ring system,¹⁴ problems associated with the development of a regiospecific construction of the 7-methoxy enone functionality

(13) Wang, A. Ph.D. Thesis, Rensselaer Polytechnic Institute, 1997.

⁽⁹⁾ Alkylation reagent **4** was prepared in 5 steps (55% overall yield) from isovanillin by modification of a literature procedure; see: Toth, J. E.; Hamann, P. R.; Fuchs, P. L. *J. Org. Chem.* **1988**, *53*, 4694–4708.

⁽¹⁰⁾ For the related highly diastereoselective alkylation of a chiral 2-alkyl substituted benzamide, see: Schultz, A. G.; Kirincich, S. J. J. Org. Chem. **1996**, *61*, 5626–5630.

⁽¹¹⁾ All synthetic intermediates were characterized by ¹H and ¹³C NMR, IR and low resolution MS analyses. Compounds **3**, **6**, **9a**, **12**, **13**, and **14** gave satisfactory combustion analyses. All other compounds gave satisfactory high-resolution MS analyses.

⁽¹²⁾ Gevorgyan, V.; Yamamoto, Y. Tetrahedron Lett. 1995, 36, 7765-7766.

⁽¹⁴⁾ For a discussion of the importance of the lactone bridge in a substrate related to **6** that undergoes radical cyclization by the 6-exo-trig pathway, see: Schultz, A. G.; Wang, A. *J. Org. Chem.* **1996**, *61*, 4857–4859.

in cepharamine (*vide infra*) required an earlier introduction of the C(6) carbonyl group. Protection of the phenolic hydroxyl group as the formate ester and allylic oxidation with *tert*-butyl hydroperoxide and CuBr¹⁵ gave enone **7**. Ketalization of **7** under aprotic conditions¹⁶ provided **8**, and radical cyclization of **8**, followed by basic hydrolysis of the formate ester gave **9a**.

The phenol **9a** was converted to a base-stable MOM derivative **9b**, from which a very efficient Hofmann-type rearrangement gave the cyclic carbamate **10**. Formation of the cis-fused *N*-meth-ylpyrrolidine ring was then effected in one experimental operation by treatment of **10** with LiAlH₄ in refluxing THF. This remarkably efficient transformation of **10** to **11** evolved from a careful study¹⁷ of the less efficient stepwise process involving (1) cleavage of the aryl ether with CAN, (2) conversion of the resulting alcohol to the mesylate, (3) intramolecular carbamate N-alkylation, and (4) reduction of the cyclic carbamate with LiAlH₄.

Swern oxidation of **11** gave ketone **12**, and alkylation of the enolate of **12** under conditions that favor O-alkylation with MeI afforded enol ether **13**.¹⁸ It should be noted that this solution to the challenge of construction of the C(6)-C(8) keto enol ether in cepharamine is a considerable improvement with respect to methodology involving oxidation to a 6,7-diketone derivative followed by acid-catalyzed enol ether formation.¹⁹ Finally, acid-catalyzed ketal and MOM ether hydrolysis proceeded without disruption of the enol ether to give (+)-cepharamine (**14**) in 97%

yield: mp 184–185 °C (colorless prisms from ether); $[\alpha]^{26}_{D}$ +246 (*c* 2.8, CHCl₃); lit. mp for (–)-cepharamine (1) 187–188 °C; $[\alpha]^{22}_{D}$ -243 (*c* 0.88, CHCl₃).²⁰

In summary, the first asymmetric synthesis of a hasubanan alkaloid, (+)-cepharamine (14), has been carried out with complete regio- and stereocontrol. The synthesis of 14 required 16 steps from the chiral benzamide 3 and was carried out with an overall yield of 12%. Important features of the synthesis are the convergency of the asymmetric Birch reduction-alkylation step $3 + 4 \rightarrow 5$, the efficient release of the chiral auxiliary by the acid-catalyzed lactonization to give $\mathbf{6}$, the radical cyclization that generates a quaternary center at C(13) by way of the 6-exotrig pathway, the efficient carboxyl to amino conversion $9b \rightarrow$ 10 which very effectively extends the utility of the asymmetric Birch reduction-alkylation protocol,²¹ and the development of a potentially general solution to the introduction of C-ring functionality in the hasubanan alkaloids. The opioid receptor pharmacology of 14 and congeners is under investigation and will be reported elsewhere when completed.

Acknowledgment. This work was supported by the National Institutes of Health (GM 33061). This paper is dedicated to Professor Richard H. Schlessinger, teacher and friend, who died on December 11, 1997.

Supporting Information Available: Experimental details and characterization of isolated intermediates (14 pages, print/PDF). See any current masthead page for ordering information and Web access instructions.

JA981624W

⁽¹⁵⁾ Salvador, J. A. R.; Sá e Melo, M. L.; Campos Neves, A. S. *Tetrahedron Lett.* **1997**, *38*, 119–122.

⁽¹⁶⁾ Tsunoda, T.; Suzuki, M.; Noyori, R. *Tetrahedron Lett.* **1980**, *21*, 1357–1358.

⁽¹⁷⁾ Details of this study will be provided in the full account of this work. (18) For an analogous O-alkylation of a ketone enolate flanked by two quaternary centers, see: Schultz, A. G.; Kashdan, D. S. J. Org. Chem. 1973, 38, 3814–3815.

⁽¹⁹⁾ For perspective, see the conversion of the keto lactam **65** to **68** (~10% yield) in ref 4b. In contrast to the reactivity of the lactam described in ref 4b, the 6,7-diketone derived from **12** gave the regioisomeric keto enol ether. For a related α -diketone O-alkylation developed in the context of cephalotaxine construction, see: Burkholder, T. P.; Fuchs, P. L. J. Org. Chem. **1988**, 110, 2341–2342.

⁽²⁰⁾ For a recent listing of physical and spectroscopic properties of (–)cepharamine, see: Kashiwaba, N.; Morooka, S.; Kimura, M.; Ono, M.; Toda, J.; Suzuki, H.; Sano, T. J. Nat. Prod. **1996**, 59, 476–480. IR, ¹H and ¹³C NMR spectra of (+)-cepharamine compared favorably to spectra of the natural product. We thank Dr. Noriaki Kashiwaba and Professors Osamu Hoshino and Toshiro Ibuka for the provision of key spectra of (–)-cepharamine.

⁽²¹⁾ For a discussion of the strategic evolution of the asymmetric Birch reduction-alkylation, see: Schultz, A. G.; Holoboski, M. A.; Smyth, M. S. *J. Am. Chem. Soc.* **1996**, *118*, 6210–6219.